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NEW LOCAL COMPOSITION MODEL FOR 
EXCESS GIBBS ENERGY. 

I. APPLICATION FOR THE CORRELATION 
OF ISOTHERMAL VLE DATA 

PAWEL GIERYCZ* 

Institute of Physical Chrrnistr.y, Polish Academy of’ Sciences, 
Kasprzaka 44/52 ,  01 -224 Wursaw, Poland. 

A new local composition model for the excess Gibbs energy is derived from generalized lattice theory. 
The applicability of the model to the calculation of isothermal VLE data has been checked on a series of 
various binary systems. The results obtained show the superiority of the proposed model over previous 
proposals (the NRTL. Wilson. UNIQUAC) with the same number of adjustable parameters. Some 
recommendations about the use of the model have been made. 

KEY WORDS: Lattice model, local composition, excess Gibbs energy calculation, 
correlation equation, correlation of VLE data. 

INTRODUCTION 

The complex nature of liquid mixtures is rather difficult to describe in detail. One 
of the popular methods is to describe the liquid as a well ordered lattice. The most 
important seems to be the Guggenheim quasichemical model’ where the liquid is 
treated as a lattice with coordination number “z”. Each lattice segment is in direct 
contact with z neighboring segments through “z” contact sites. All the segments are 
of equal size (unit segments) and each molecule in the liquid is built of such segments. 
Application of statistical mechanics to the simple lattice structure described above 
enables, in principle, calculation of the thermodynamic properties of the lattice. 

This model however has too many arbitrary assumptions concerning the shape of 
the molecules (segments) and therefore is rather far from the reality. Let us attempt 
to derive the lattice model in the most general way. 

* Address for correspondence until 20.05.1991, Dept. of Chemistry and Chem. Eng., Kanazawa 
University, Kanazawa, lshikawa 920, Japan. 
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178 P. GIERYCZ 

THE EXTENDED LArTICE MODEL 

As previously the liquid is treated as a lattice but the molecules can act each on other 
according to their interaction potentials. It means that the molecular interactions are 
not reduced merely to those of neighboring molecules. 

It  has been assumed that the molecules can act on each other by their active sites 
and that the interaction potential for the same kind of interactions is always the 
same (i.e. ui, potential is always constant independently of the position of “ i ”  and 
“ j ”  active sites). It  has been assumed also that the lattice volume does not depend 
on the configuration of molecules (excess volume is equal to zero) and therefore the 
configurational contribution to the lattice partition function can be separated from 
other contributions (rotational, vibrational). 

The configurational partition function R* can be calculated from the following 
equation: 

a* = 1 w i  e x p ( 2 )  
i 

where: the summation goes over all possible energy levels of the lattice, wi is a 
combinational factor denoting the number of possible lattice configurations, for which 
the lattice has the energy u i .  

For the macroscopic system as the most probable energy level should be entirely 
dominant, one can justify the replacement of the sum in Eq. (1)  by its maximum term 
(maximization): 

R* = w* exp(&) 

where: * indicates the value for the maximum term. The remaining problem is to 
find an expression for W* and U*. 

The total configurational energy of the lattice is assumed to be the sum of 
contributions from all the binary contact of active sites with uij being the pair 
potential for an interaction between sites and molecules i and j :  

u* = (t) c c N j i U j i  
i j  

(3) 

where: the factor reflects that two contact sites are involved in each contact, N j i  is 
the total number of contact sites on molecules i involved in contacts with sites 
belonging to molecules j .  

The combinatorial factor wi in Eq. (1) proposed by Guggenheim’ represents the 
number of indistinguishable ways of arranging all the mutual contacts in the lattice, 
which means that they can be arranged independently of each other. 

This is not the case and Larsen2 proposed the modification of the factor wi in order 
to obtain the correct value for random conditions: 

where the superscript denotes random conditions. 
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MIXTURE MODEL FOR GIBBS ENERGY 179 

Now it is possible to calculate the configurational partition function R*. The 
maximum term in Eq. (2) is obtained by differentiation of In R* with respect to the 
independent Nlj. For the maximum therm all these derivatives must be equal to zero. 

In this differentiation Stirling’s approximate formula is used: 

In(n!) = n In(n) - n ( 5 )  

The number of contacts on component i involved in contacts with sites on 
component j must be the same as the number of contacts of component j involved 
in contacts with sites on i (i.e. the contact balance must be fulfilled). This gives the 
following restrictions on Nli’s: 

where: N i  is the total number of contact of component i. 

tion of In R* with respect to these yields the following expression: 
Selection of all N j i  with j larger than i as the independent variables and differentia- 

(7 In R* 
~- - -(i)(ln N , ,  + In N,, - In N, ,  - In Nil) 
ZN,, 

- ( i ) (ui j  + u j i  - llij - U j j )  (8) 

Setting Eq. (8) equal to zero we can calculate the values of Nli corresponding to 
the maximum term in Eq. (2): 

with wij being the lattice interchange energy: 

(10) 

If we assume that each molecule of type i may contact with molecules of type i 
by p active sites, and each j molecule may contact with ,j molecules by q active sites 
and each i molecule may contact with j molecules by z active sites than the total 
number of contacts of “ i  - i”, “ , j  - j ”  and “ i  - j ”  type can be written as follows: 

w.. = u , .  + u . .  - u. .  - 11.. 
11 11 11 11 I J  

where nij is a number of molecules of type i around a moleculej and can be calculated 
as a function of intermolecular distance r :  

r r  

nij = 47cni/l/ r2y i j ( r )du J, 
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180 P. GIERYCZ 

where ni is the total number of molecules i in the system, Vis the volume of the 
system, and gii(r) is the radial distribution function. 

Substituting Eqs. (1 1, 12, 13) into Eq. (9) we obtain: 

If we define the local mole fractions xji: 

where x j i  + x i i  = 1, then Eq. (15) can be rewritten into the following form: 

It is seen that if we introduce the assumptions corresponding to the Guggenheim 
lattice theory’ that the number of active sites on molecule i which contact with active 
sites of i molecules is equal to the number of active sites on molecule i which contact 
with active sites of j molecules and equal to the number of active sites on molecule 
j which contact with active sites of j molecules ( z  = p = q), then Eqs. (17) reduce to 
those given by the Guggenheim model’. 

Now according to Wilson3 we can define a general relation between local mole 
fraction xii  of molecules i and local mole fraction x j i  of molecules j and between 
local mole fraction x j j  of molecules j and local mole fraction x j i  of molecules i: 

Equations (18) and (19) show that local mole fraction are not only a function of 
the overall mole fractions and interaction energies (the Guggenheim model ’) but also 
a function of the number of surrounding molecules which cannot be easily expressed 
by the concentration. That is why Eys. (18), (19) cannot be used directly in such form 
for calculation of the local mole fractions in solutions. 

THE LOCAL COMPOSITION MODEL 

Equation (17) expresses the distribution of molecules in a solution as a function of 
interaction potentials (wij). To write Eq. (17) in the form expressed only by mole 
fractions and interaction potentials it is necessary to make some assumptions 
concerning the number of “ i  - i” and “ j  - j ”  active sites on one molecule. 

For simplicity we can assume that the number of active sites on molecule i which 
contact with active sites of i molecules is smaller than the number of active sites on 
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MIXTURE MODEL FOR GIBBS ENERGY 181 

molecule i which contact with active sites of j molecules and the number of active 
sites on moleculej which contact with active sites o f j  molecules is greater than the 
number of active sites on molecule i which contact with active sites of j molecules 
and both these differences are equal to r :  

p = z - r  and q = z + r  

Introducing these to Eq. (17) we obtain: 

Now using the Eq. (14) and assuming that 

j r r 2 ~ , , ( r ~ i b .  = j(;r2%;(rwr 

and that the overall mole fraction is given by the equation: 

1'1 

11,  + n, 
y =- 
. I  

we can rewrite Eq. (18) in the following form: 

Now we attempt to introduce the two-liquid theory of Scott4. The theory assumes 
that in the mixture of molecules i and ,j there are two kinds of cells containing 
molecules i a n d j  at  their centres. The residual Gibbs energy (compared with the ideal 
gas at the same temperature, pressure and  composition) is the sum of all the residual 
Gibbs energies for two-body interactions experienced by the center molecule. 

According to Scott4 the residual Gibbs energy yi for a cell containing a molecule 
i at the center is given by: 

yl = .';;<j;; + s j ;g j ;  

~ qJ = .y IJ  ..( J,IJ . . + .y. I J  .g . .  I J  

(24) 

and for a cell containing a molecule j at  the center by: 

(25) 

If we consider the pure liquid i, than xii = 1 and xji = 0 and the residual Gibbs 
energy for the cell with i molecule in the center is: 

Yz. = Y;; (26) 

~ ' p  = Y j j  (27) 

and similarly, for a cell containing a moleculej a t  the center: 

The molar excess Gibbs energy for a solution is the sum of two changes in residual 
energy: first caused by the transferring xi molecules from a cell of the pure liquid 
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182 P. GlERYCZ 

into a cell of the solution equal t o  xi (g i  - 8;) and second by the transferring x j  
molecules from a cell of the pure liquid into a cell of the solution equal to xj(gJ - gi). 

Thus 

g" = xi(gi  - yb) + xj (y j  - g;) 

X i j  + xjj = 1 

x.. J l  + .y.. I 1  = 1 

Y E  = xixj i (8j i  - Y i i )  + xjxij(gij - g j j )  

(28) 

Substituting Eqs. (24, 25, 26, 27) into Eq. (28) and remembering that: 

(29) 

(30) 
we obtain: 

(31) 

Now we can try to express the local mole fraction as a function of Gibbs energy. 

(32) 

For isothermal and isobaric conditions we can rewrite Eq. (10) in the following 

By definition we can write: 

uji  = yji - A(pV)ji + TSji 

form: 

". . = yi j  + y .. - y.. - y . . 
rJ , J I  11 JJ 

- p(AV,j + AKi - AKi - A y j )  

+ T(S,, + sji - sii - Sjj) 

The excess volume can be expressed by the following equation: 
(33) 

Substituting Eqs. (6) and (7) into Eq. (34) and recalling our primary assumption, 
that the excess volume (AV") must be equal to zero, we obtain: 

A y j  + AVji - AV,i - A Y j  = 0 (35) 
and Eq. (33) reduces to the following form: 

w . . = q .  + g . . - y . . - y . .  
I! % I J  J l  ( 1  JJ  

+ T(Si j  + sji - sii - S j j )  

Introducing an entropy factor: 

sji - sii 
(37) 

which depends only on diRerence between shape of molecules i and j ,  Eq. (23) takes 
the following form: 
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MIXTURE MODEL FOR GIBBS ENERGY 183 

Now we can define a relation between local mole fraction xii of molecules i and 
local mole fraction xji of moleculesj and between local mole fraction xjj of molecules 
j and local mole fraction xij of molecules i is expressed only by the interactions 
potentials and overall mole fractions: 

If following Wilson3 we assume that for interaction between two neighboring 
molecules r = 0, and z = 1, and that the A i j  parameter can be considered in the 
simplest way as a ratio of mole volume of component i and.1: 

.~ 

we obtain Wilson's3 expression for local compositions: 

.Y: 

If we assume, as Renon and Prausnits5 did, that we consider solution of the same 
molecules ( A i j  = 1) interacting with the same number of molecules ( r  = 0) we retain 
the expression for local composition as in  the NRTL equation: 

where: 

Y J l  = ~ 

x, + x, exp( -zlJ F) 
1 

z.. z - 
z 

(43) 

The form of Eqs. (39) and (40) for local compositions was confirmed also by 
Molecular Dynamics (MD) calculations. Gierycz et ~ 1 1 . ~  have performed many 
calculations of local composition in binary mixtures with the same and different size 
of particles in the entire composition range. It  was shown there that the NRTL 
equation could reproduce the MD data only for the mixtures with the same size of 
particle. In the case where the components had different sizes the agreement was 
rather poor. To get good agreement i t  was necessary to introduce a correction factor 
which was a measure of the difference of the size parameter of the particles. That 
correction factor appeared in the same place what AiJ and A j i  factor in the Eqs. (39) 
and (40). 
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184 P. GIERYCZ 

Substituting Eqs. (39) and (40) into Eq. (31) we can get the general equation for 
excess Gibbs energy from the local composition concept: 

~ xi(xj)' - P A j i  exp( -as j i )  
RT xi + (xj)l-DAjiexp(-cx~ji) 'ji 
S E  - 

- 

(44) 
.uj(.xi)l +pAijexp( - a t i j )  

xj  + (x i ) '  + oAij exp( - x r i j )  
+ T i j  

where: 

The activity coefficients tli and y j )  can be found by differentiation of Eq. (44) and 
they have the following form: 

.X;xJ: DZji( 1 - /hi) 
( X i  + x; -pzji) 2 f T j i  

where: Zi j  = Ai j  exp( - 3 ~ ~ ~ )  

Equations (44). (43, (46) can be easily generalized to solutions containing any 
number of components. The generalization requires no additional assumption. We 
further consider only two-body intermolecular interactions and therefore the assump- 
tions needed for multicomponent solutions are the same as those for binary solutions. 

For multicomponent solutions, the excess Gibbs energy is as follows: 

xIx1 +fl,tAIJexp( -zIJtlJ) 
+ '  y I  + x,' +"i~Al1exp( - a , l ~ , l )  7~~ 

where: N is the number of components. 

APPLICATION TO THE CALCULATION OF VLE DATA 

(47) 

Equations (44)-(47) can be used for calculation of phase equilibria in binary and 
multicomponent systems. The equation for binary mixtures has two energetic 
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M I X T U R E  MODEL FOR GlBBS ENERGY 185 

parameters (qij - g j j ,  gji - g i i ) ,  two parameters dependent on shape of interacting 
molecules ( A i j  and A j l )  and two parameters depending on the number of two-body 
interactions in a solution (2 and /)). But four of these parameters ( A i j ,  A j i ,  c! and 
f i )  can be calculated from pure substance properties and only two energetic para- 
meters are to be adjusted using the experimental data. 

The entropic A i j  parameters (Eq. 37) for mixtures of nonpolar molecules account 
for both size and shape differences. For more complex mixtures they account for 
molecular orientation in the intermolecular interaction of a polar or hydrogen 
bonding. For simple cases A i j  parameters can be assumed to be equal to one but for 
more complicated systems they should assume different values. 

The expression for A,,,  parameters can be derived from our lattice model in the 
following way. We can imagine that our lattice is divided into very many cells which 
are so small that by far the greater part are empty. As a result of the thermal agitation 
the occupied cells are continuously changing. 

Now we can assume that we partition our lattice into two parts where in the first 
part there are p cells and n ,  molecules of “ i ”  kind and in the second part 4 cells and 
n2 molecules of kind “ j ” .  Since the interchange of either two empty or  two occupied 
cells does not alter an arrangement, the total number of configurations is given by: 

After the partition has been removed ( 1 1 ,  + r i 2 )  molecules are distributed over 
( p  + q )  cells. The number of different configurations i d  is now given by: 

Now we can calculate the increase in entropy S,,  due to mixing of two kinds of 
molecules “ i ”  and “ , j ” :  

J?I’ 
S ,  = k In 

IJI 

( P  f LI)!(p - 17,)!([1 - tlz)! 
~~ 

( p  + q - 11, - n z ) ! p ! q !  
S,, = k In 

In the same way we can consider the increase in entropy S j j  due to mixing of 
molecules “ j ”  which had occupied two parts of the lattice with p cells (n212-molecules) 
and q cells (1~~/2-molecules) and then were distributed over (p  + y) cells. The number 
of configurations rn” before and n’~”’ after removing of the partition is given by: 
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186 P. GIERYCZ 

and the increase of entropy Sj j  by: 

From Eqs. (51) and (54) using Stirling's approximation (5) we can calculate the 
difference S i j  - S,: 

s.. - s., ( p  - ~ , ) P - " l ( q  - n2)4-"' 
l J  JJ  

k - I"( ( p  + q - n ,  - n 2 ) P + q - " - " 2  

Now assuming according to our investigations that n ,  = p - z and n2 = q - z and 
substituting these to the Eq. (55) together with our previous definitions of p ,  q,  x ,  
f l  ( p  = z - r ,  q = z + r ,  x = (l/z), f l  = ( r / z ) )  we find the following expression for the 
difference S i j  - S j j :  

In an analogous way we can derive the expression for the difference Sji - Sii and 
it will have the following form: 

[ ( 2  - [j)/.]' -8'2 
' I  J 1  = I n  

[ ( 2  + f l )a] ( ' ' I i 2  

s.. - s .. 
zk 

- _ _ _ ~  

Thus the entropic parameters (Eq. 37) assume the following form: 

[(2 + pya] O i 2  

[ (2  - f l ) /a]  I - !J'2 
A , .  = 

l J  

[( 2 - P)/.] - 

[ ( 2  + f l ) /a] + f l i 2  
A .. = 

(57) 

(59) 

The a parameter (Eq. 44) according to its definition should assume value from the 
range 0-0.3, but rather close to zero. The /3 parameter (Eq. 44) can be assumed to 
be equal to x ( r  = 1 )  or - a  (if we make an opposite assumption concerning the 
difference in the number of contacts of molecule i andj: p = z + r and q = z - r-Eqs. 
(20), (23) )  or to be a multiplicity of tl ( r  = 2, 3 , .  . .) or -a.  The 0 parameter can be 
assumed also to be independent of c i  value close to zero because the relations between 
z ,  p ,  and q can be different than these assumed in Eq. (44), and by the f l  value we 
can approximate the true relation for local mole fractions (Eq. 18, 19). Finally the ,8 
parameter can be equal to zero and in this case Eqs. (44H47) reduce to the NRTL 
equation5 with extra size parameters A i j .  

The a and p parameters can be treated also as adjustable parameters which can 
improve the results but in this case we cannot give a physical meaning to the values 
of these parameters. 
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MIXTURE M O D E L  FOR GIBBS ENERGY 187 

We have checked the applicability of the proposed model on VLE binary data for 
systems formed by hydrocarbons (systems with physical interactions), and hydro- 
carbons and strong associating systems (systems with physical and strong chemical 
interactions). 

These two groups of systems have been selected a s  t h e  most interesting from point 
of view of our previous investigations"""" I .  

Selection of the systems have been performed in the same way as previouslys,','" 
i.e. selecting the systems we wanted to fullfill two conditions. The first one was the 
wide representation of various kinds of hydrocarbons interacting with strong associ- 
ating systems and second one it was the selection of good consistent VLE data. 

As previously' to avoid the problems with the temperature dependence of para- 
meters which seems to be discussible we limited our interests to isothermal data only. 
Additionally to have a possibility of comparison with our previous investigations we 
based mostly on the data selected previously8~').1". 

Finally we have selected 18 isothermal binary VLE data: 

I )  benzene-2-propanol at T = 31 3.15, 328. IS K '  ' 
2 )  benzene-cyclohexane at T = 3 13.15, 328.15 K ' 
3) cyclohexane-2-propanol a t  T = 3 13.15, 328.15 K I ' 
4) cyclohexane-ethanol at T = 323.1 5 K I 3  
5 )  cyclohexane-benzene at T = 323.15 K "  
6) ethanol-benzene at  T = 323.15 K I 3  
7) ethanol-benzene at T = 328.15 K " 
8) n-hexane-benzene at T = 328.35 K "  
9) n-hexane-ethanol a t  T = 328.15 K t 4  

10) cyclohexane-methanol at T = 328.15 K" 
1 1 )  benzene-cyclohexane at T = 328.1 5 K I 3  
12) benzene-methanol at T = 328.25 K" 
13) cyclohexane-ethanol at T = 323.15 K" 
14) benzene-cyclohexane at T = 323.15 K 
15) benzene-ethanol at  T = 323. I S  K 
16) acetone-2,2,4-trimethylpentane at 325.15 K I(' 
17) carbon tetrachloride-hexadecane at 298.15 K I 7  
18) carbon tetrachloride-hexadecane at  328. I5 K '  

We have performed our calculations using the N R T L 5  equation with r = 0.2 and 
the proposed model in three versions: I with the assumption that A t 2  and A , ,  
parameters are equal to 1 and r = /I. 1 1 ~  where the A j j  parameters are equal to one 
and CI and f i  parameters assume different values but are close to 0, ITI--where the 
A , ,  and A , ,  parameters are calculated according to Eqs. (58) and  (59) and r = p. 
For all versions the ct and /) values were chosen arbitrarily and the models used had 
only two adjustable parameters (energetic parameters: q 1 2  - y22 and y l l  - y, ,). 
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188 P. GlERYCZ 

Table 1 
method in three versions (1, 11, 111) for all binary systems investigated. 

Results of correlation by means of the NRTL equation and the proposed 

D( P ) / k P o  

Sysrem T / K  NRTL I I I  111 

Benzene 2-propanol 
Cyclohexane 2-propanol 
Benzene cyclohexane 
Benzene 2-propanol 
Cyclohexane 2-propanol 
Benzene cyclohexane 
Benzene ethanol 
Benzene cyclohexane 
Cyclohexane ethanol 
n-hexane ethanol 
Ethanol benzene 
n-hexane benzene 
Benzene cyclohexane 
Methanol cyclohexane 
Methanol benzene 
Acetone 2,2,4-trimethylpentane 
Carbon tetrachloride hexadecane 
Carbon tetrachloride hexadecane 

313.15 
313.15 
313.15 
328.15 
328. I5 
328. I5 
323.15 
323.15 
323.15 
328. I5 
328. I 5 
328. I5 
328.15 
328.15 
328.1 5 
325.15 
298. I5 
328. I5 

0.021 
0.279 
0.046 
0.046 
0.205 
0.144 
0.164 
0. I66 
0.304 
2.414 
0.738 
0. I96 
0. I44 
2.490 
0.756 
2.582 
0.058 
0.160 

0.020 
0. I07 
0.046 
0.033 
0.101 
0.059 
0.101 
0. I34 
0.145 
0.952 
0.407 
0. I33 
0.058 
0.948 
0.309 
0.469 
0.041 
0.151 

0.012 
0.006 
0.046 
0.02 1 
0.094 
0.059 
0.096 
0. I34 
0.143 
0.871 
0.407 
0.133 
0.058 
0.948 
0.224 
0.469 
0.041 
0.150 

0.0 19 
0.060 
0.046 
0.030 
0.093 
0.056 
0.095 
0.1 15 
0. I32 
0.774 
0.40 1 

0. I 32 
0.056 
0.414 
0.167 
0.446 
0.038 
0.100 

For computation of the vapour phase nonideality the Hayden-O'Connell '' corre- 
lation was applied. The computed values of the root mean square deviations of 
the total pressure D(P) (Eq. 60) for all investigated systems and models are given in 
Table 1. 

where: PrxP, Pya' are the experimental and calculated total vapour pressures, respec- 
tively, n is the number of experimental data points and rn is the number of adjustable 
parameters. 

parameters obtained for all investigated systems 
during the calculations. 

Table 2 shows the values of a and 

CONCLUSIONS 

Examining the results obtained (Table 1) one can see that in all cases the proposed 
method (version I) gave much better results of correlation of VLE data (sometimes 
even 3-4 times) than the NRTL equation. 
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Table 2 The values of 1 and /I parameters in  three versions of calculations for all 
binary systems investigated. 

Sysretn 

I II Ill 

Benzene 2-propanol 
Cyclohexane ?-propano1 
Benzene cyclohexane 
Benzene 2-propanol 
Cyclohexane 2-propanol 
Benzene cyclohexane 
Benzene ethanol 
Benzene cyclohexane 
Cyclohexane ethanol 
n-hexane ethanol 
Ethanol benzene 
n-hexane benzene 
Benzene cyclohexane 
Methanol cyclohexane 
Methanol benzene 
Acetone 2,2,4-tri-methylpentane 
Carbon tetrachloride hcxadecane 
Carbon tetrachloride hexadecane 

313.15 
313.15 
313.15 
328.15 
328.15 
328. I 5  
323. I5  
323. I5 
323.15 
328. I 5  
328. I5 
328. I5 
328. IS  
328. I5 
328. I5 
325. I5 
298. I5 
328.15 

0.00 I 
0.05 
0.001 
0.001 
0.0 I 
0.01 
0.0 I 
0.01 
0.05 
0.08 
0.0 I 
0.001 
0.05 
0.2 
0. I 
0.1 
0.08 
0. I 

0001 
0 05 
0001 
0 05 
001 
001 
001 
001 
0 05 
0 08 
0 0 I 
0001 
0 05 
0 2  
0 1 

0 1  
0 08 
0 1  

0.0005 
0.08 
0.001 
0.0 I 2  
0.012 
0.0 I 
0.008 
0.0 I 
0.056 
0.09 
0.0 I 
0.00 1 

0.05 
0.2 
0.11 
0. I 
0.08 
0.08 

0.00 I 
0.05 
0.00 I 
0.00 I 
0.0 I 
0.00s 
0.01 
0.005 
0.02 
0.05 
0.005 
0.001 
0.01 
0. I 
0. I 
0. I 
0.08 
0.05 

It  is seen also that the assumption that the 2 parameter is equal to the [j parameter 
can be accepted as true; this is confirmed by the second version of calculations (Tables 
1 and 2). The improvement obtained by assumption of different values of x and /j 
was in most cases rather small and the obtained value of x parameter differed only 
slightly from the /1 parameter (Table 2). 

I t  is interesting to notice that the 'z and /j parameters assume for non- or 
weak-associating components very small values (0.0002-0.005) and for strong-assoc- 
iating higher values (0.01-0.2). This is in agreement with our liquid model where for 
non-associating components each molecule interacts with many other molecules (high 
values of z and p and 4,  small values of r and b) and association causes that molecules 
are grouping. Instead of many interactions there are only few interations between 
groups of molecules ( x  assumes higher value Table 2). 

Such interpretation is confirmed by version 111 of our calculations. For strong 
association the entropy factors ( A i j )  become important (high value of x and p) and 
taking them into account improves significantly correlation results (Table 1-- systems 
with methanol). 

Looking at the form of A i j  parameters (Eqs. (58) and (59)) one can see that for 
small values of CI and j they are close to one and have no influence on correlation 
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results. They attain values significantly different from one and are important when 
association is occurring (higher values of 2 and p). 

= /3 parameters 
obtained for version I and 111 of our model are different. It  is caused by the fact that 
when we assume the A i j  parameters equal to 1 ,  the x = [j parameters are influenced 
by the shape effects. Therefore they have different values from those in the situation 
where the entropy factors are taken into consideration. 

Concluding we can say that the proposed model in version I11 ( x  = [I and Ai, 
parameters calculated from Eqs. (58) and (59)) can be recommended for correlation 
of VLE data and leads to better results than the NRTL equation. The model has the 
same number of adjustable parameters as the NRTL equation (two energetic 
parameters for binary systems) and as all local composition models can be applied 
for calculation of any kind of phase equilibria in multicomponent systems. 

Moreover for some systems very difficult to be correlated the description (flexibility 
of the equation) can be improved by the use of slightly different values for 2 and /i 
parameters. 

The approach presented here and the formulae obtained for local composition 
fractions (Eqs. (IS),  (IS), (39), (40)) have been used for Scott’s two fluid theory4; that 
is w h y  the model obtained is in fact a generalized NRTL equation. Based on the 
proposed formulae for the local composition fractions, any local composition model 
can be assessed and modified. 

I t  is necessary to point out that for some systems the values of 

A c ~ ~ i o ~ ~ l r d ~ ~ c ~ i ~ r t i ~  
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